Effect of Black Dates on Iron Deficiency Anemia of Orphan Children

Heba Ezz El-Din Youssef and Abeer Ahamed Khedr

Nutrition and Food Sciences Department, Faculty of Home Economics, Minufiya Univ Shibin El-Kom, Egypt

Received on: 3/9/2015 Accepted: 22/11/2015

ABSTRACT

Iron deficiency anemia represents a major public health problem, particularly in infants, young children and I women. Therefore, this study was aimed to evaluate the effect of black dates on children suffering from iron de anemia living in orphanage. Forty male children (9-11years) were divided into four equal groups. Non-anemi anemic groups include positive control group, date with hulls group and date without hulls group (ingested100 dates daily for 8 weeks). The energy, protein, carbohydrate, fat, fiber, vitamins and minerals intake of non-ane anemic groups compared with Dietary Reference Intakes (DRI) were evaluated. The anthropometric measurem hematological parameters during the experiment period were also evaluated. Anemic groups did not consume protein however; energy and fiber were approximately similar to the DRI values. Non-anemic group and anemi had lower thiamin, vitamin A, vitamin E, calcium and phosphorus intake than DRI values. Iron and zinc was h non-anemic group compared with DRI values while anemic groups had an opposite trend. Date without hulls gr higher weight and body mass index than non-anemic group and date with hulls group. Hemoglobin, haemato blood cell, mean corpuscular volume, mean corpuscular hemoglobin, serum iron, serum ferritin and transferrin as in black date groups were increased by increasing the experiment period while total iron binding capacity had an trend. Date without hulls group was more effective than date with hulls group in improving serum iron, serum transferrin saturation and total iron binding capacity.

Key words: Orphanage children, anemia, hemoglobin and dietary intake.

INTRODUCTION

Iron-deficiency anemia is a worldwide public health problem, affect both developed and developing countries, with serious consequences to human health and the socio economic development of countries (Yurdakök et al., 2004). It affects approximately 30% of the world's population (Gasche et al., 2004). Although anemia has a variety of causes, anemia due to iron deficiency represents 50% of these causes (Black et al., 2003). The main risk factors for iron deficiency among young children are low intake and the high requirement of iron during child growth (Soliman et al., 2009 and Falkingham et al., 2010). Iron deficiency anemia develops when available iron is insufficient to support normal red cell production which is the most common type of anemia. Common causes of iron deficiency include inadequate intake of dietary iron, inadequate iron utilization during chronic and inflammatory diseases, impaired iron absorption, or excess iron loss (Santiage, 2012). Iron supplement or an iron-fortified food with added micronutrients will have a beneficial effect on hemoglobin status in children at risk of micronutrient deficiencies (Rosado et al., 2010). Iron supplements are useful for production of a rapid improvement in the iron status in anemic individuals (Tang et al., 2015). Several substitutions are available for prevention and/or treatment of anemia. Rice fortificati an effective intervention strategy to corre deficiency in children under 5 years old (I al., 2015). Ingestion of germinated fer reduced anemia in children 6–8 years of Mancy, 2008). Therefore, this study was all evaluate the effect of black dates with or hulls as a plant source of iron on children so from iron deficiency anemia living in orphan.

MATERIALS AND METHODS

Black dates were purchased from local of Shibin El-Kom, Minufiya, Egypt.

All ethical concerns required for research have been considered before we stresearch. Also, approvals from Faculty of Economic, Menufiya University, and Mini Solidarity as well as orphanage in Shibin F Egypt were received before conducting research.

Subjects design

Eighty male children aged from 9-1 were randomly selected from two orphan Shibin El-Kom, Minufiya, Egypt. At the be of experiment, a 5 ml of their blood sample collected to determine hemoglobin (Hb), her (Ht), red blood cell (RBC), serum iron (SI) ferritin (SF) and total iron binding capacity. As the obtained data basis, forty childre

divided into four equal groups. The first group was non-anemic group (negative control group), the second, third and fourth groups were anemic groups. The second group was positive control group (untreated), the third and the fourth anemic groups were given black dates with or without hulls (100g black date / daily for 8 weeks), respectively. Anemic groups were diagnosed as iron deficiency anemia with cutoff point of anemia indices less than 11g/dl, 30 μg /dl and 27 fl for hemoglobin, ferritin and mean corpuscular hemoglobin (MCH), respectively. After 4 and 8 weeks, blood samples were collected to evaluate the hematological parameters.

Anthropometric Measurements

Weight was measured to the nearest 0.1 kg with an electronic scale, children wore light clothes and without shoes. Children height was measured to the nearest 0.1 cm. The body mass index (BMI) was calculated from the following equation:

BMI= weight (kg) ÷ square of height (m).

The mean height for age and BMI for age Z-scores were compared to the WHO (2007) reference values

Food intake was recorded for 3 days, including week end day and the previous or next 2 days (Wednesday, Thursday, Friday or Friday, Saturday, Sunday). Energy and nutrients intakes were calculated by using a computer program based on the food composition table (1996) of the *National Institute of Nutrition*. Results were compared with Dietary Reference Intakes (DRIs, 2003).

Analytical Methods

Proximate chemical composition

Moisture, fat, protein, ash, fiber and Fe of dates with and without hulls, were determined according to the method of AOAC, (1990). The carbohydrates were calculated by difference.

Hematological parameters

Hemoglobin (Hb) red blood cell (RBC) and hematocrit (Ht) of heparinized blood samples were measured using automated hematology analyzer (Sysmex, Kobe, Japan). Mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and transferrin saturation (TS) were calculated by Lee and Nieman, (1996) according to the following equations:

$$MCV = \frac{Ht}{RBC} \times 10$$

$$MCH = \frac{Hb}{RBC} \times 10$$

$$TS (\%) = \frac{SI}{TIBC} \times 100$$

Statistical Analysis

The experimental data were subjected to an analysis of variance (ANOVA) for a completely randomized design using a statistical analysis

system SAS, (2000). Duncan's multiple ran were used to determine the differences means at the level of 95%.

RESULTS AND DISCUSSION

Proximate chemical composition, irc vitamin C contents of black dates with and hulls are presented in Table (1). There v significant (P>0.05) differences in moist carbohydrate between black dates with and hulls. Black dates with hulls had higher (1 fiber, ash, iron and vitamin C contents, whil lower (P≤0.05) protein and fat contents as co with black dates without hulls. El Shorbagey, reported that black date had high contents of (9.94%), carbohydrate (69.4%), fiber (11.1 iron content (166.5mg/100g) (on dry basis) fat (1.45%) was low. Al-Shahib and N (2003) reported that the chemical compositio dates were 44-88%, 0.2- 0.5%, 2.3- 5.6% a 11.5% for carbohydrate, fat, protein and respectively. The date pulps are rich i calcium, cobalt, copper, fluorine, mag manganese, potassium (Al Farsi and Lee, 20 Mohamed and Khamis, 2004).

Energy and dietary macronutrients in non-anemic and anemic groups are shown i (2). No significant differences (P >0.05) wer in energy and carbohydrate between nonand anemic groups. However, non-anemic had a higher (P≤0.05) protein content than group. The positive control group, date wi group and date without hulls group did not c enough protein which less than mentioned by 29.47, 7.53 ant 9.15%, respectively h energy and fiber were approximately simila DRI values. In orphanage in Shibin El-Kom the daily intake of energy and protein wer than RDA values by 14.4 and 16.4%, resp (Hussein et al., 2006). However, El Gendy, reported that orphaned male in Minufiya, covered 69.47% and 100% of RDI from energy and protein intake.

The results showed that the percent energy distribution derived from carbol protein and fat were 79.2, 6.1 and respectively for non-anemic children, 80.7, 14.9%, respectively for positive group, 81.1, 13.6%, respectively for date with hulls gro 79.2, 5.4 and 15.4%, respectively for date hulls group. The results also indicated that th a tendency towards exclusive reliance on : because they are bulky thus giving satiety va cheap. Hussein et al., (2006) founcarbohydrate, protein and fat provided 55.54 and 30.23% of total calorie, respective children living in orphanage. This difference due to the food eaten by children in orpl mainly depends on aids which differ from

Data in Table (3) show vitamins and minerals intake of non-anemic and anemic groups. Non-anemic group had higher ($P \le 0.05$) thiamin, riboflavin, vitamin A, vitamin E, calcium, iron and zinc than anemic group, while phosphorus had an opposite trend. Non-anemic group and anemic group had a similar (P > 0.05) vitamin C. Anemic group intake date with or without hulls had higher ($P \le 0.05$) calcium than positive control group; intake date with or without hulls and positive control group had similar (P > 0.05) thiamin, riboflavin, vitamin C and phosphorus.

The mean intake of vitamin A, vitamin E, calcium and phosphorus for non-anemic group and anemic groups were lower than DRI values. The children in this study consumed inadequate of riboflavin, calcium and phosphorus, which are essential for carbohydrate use and essential for bone health, respectively. However, they consume adequate of vitamin C, which is important for iron absorption, and skin health. The low intake of calcium and phosphorus might be due to the low consumption of milk in orphanages, which depends on community aid. Anemic children had lower iron and zinc (5.66- 5.96 and 5.95-6.29 mg/d respectively) than DRI value (8 mg/d). The mean iron and zinc values were lower than DRI values by (25.5 and 21.38%) for positive group, (29.25 and 25.63%) for dated with hulls and (28 and 21.63%) for dates without hulls, respectively. Hussein et al., (2006) reported that the daily intake of vitamin A and Ca for orphanage children were lower than RDI by 52.6 and 43.3%, respectively. El Gendy, (2000) found shortage in calcium and magnesium intakes in Minufiya orphanage as compared with RDI.

Data in Table (4) show the anthropometric measurements of non-anemic and anemic groups. There were no significant (P > 0.05) differences in height and age between of non-anemic and anemic groups. Positive control group and date without hulls group had higher (P < 0.05) weight and BMI than non-anemic group and date with hulls group. On the other hand, no significant (P > 0.05)differences were found in weight and BMI between non-anemic group and date with hulls group. Comparison to WHO (2007) reference values, height for Z-score (HAZ) and BMI for Z-score (BMI Z-score) values, the HAZ value refer to normal between 0 and +1SD for all groups. However BMI Z-score values refer to overweight between + 1 and + 2SD for non-anemic and date with hulls groups and obese > +2SD for positive control and date without hulls groups. This observation might be due to increase the carbohydrate intake and or decrease the physical activity. Karim and Zahid, (2012) reported that the HAZ for 89% of orphan children was normal and 21% was overweight in Dhaka city in Bangladesh. The classification of BMI in orphanage of El-Kom, Egypt reveals that 50% of male (were in normal weight (Hussein et al., 2006).

Table (5) shows the effect of black date: Hb, Ht, RBC, MCV and MCH of non- anei anemic groups. The levels of Hb, Ht, RBC and MCH in anemic groups were signi (P≤0.05) lower than non-anemic group w exception of MCV for anemic groups ingeste date for 8 weeks which was similar to (P>0.0 anemic group.

At zero time, Hb, Ht, RBC, MCV and I positive control group were similar (P>0 anemic groups ingested black dates with or hulls. However after 4 and 8 weeks, their le positive control group were significantly (lower than anemic groups ingested black dat or without hulls with exception of RBC for § which was similar to (P>0.05) anemic ingested black dates. The results indicated the dates enhanced Hb, Ht, MCV and MCH weeks of experiment period. These inc might be due to improve in iron intake of ingested black dates with or without hulls. had a positive effect on hematological para Abdel-Rahman et al., (2008) reported that th of Hb were improved in Egyptian child females after ingesting 100g daily black date weeks. These results are in agreement with t Hemandez et al., (2006) and Sazawal et al., who reported that increased Fe intake respor increment of Hb concentration.

There were no significant (P>0.05) diffin hematological parameters under study I date with hulls group and date without hull with the exception of Ht for date withou group for 8 weeks which was higher (P \leq 0.0 date with hulls group for 8 weeks.

Table (6) shows the effect of black date SF, TIBC and TS of non- anemic and groups. Non-anemic children had higher (P SI, SF and TS than anemic children w exception of SF for anemic children ingest without hulls for 8 weeks which was sir (P>0.05) non-anemic children. Anemic child higher (P \leq 0.05) TIBC than non-anemic during the experiment period.

At zero time, anemic children ingested dates had higher ($P \le 0.05$) SI and TS than control group, while TIBC had an opposite There was no significant (P > 0.05) difference between positive control group and date growell as there were no significant (I differences in SI, SF and TS between date without hulls group. Howeve in date with hulls group was lower ($P \le 0.0$ date without hulls group.

After 4 and 8 weeks, anemic children ingested black dates with or without hulls had higher (P≤ 0.05) SI, SF and TS than positive control group, while TIBC had an opposite trend. The TIBC in black date groups was decreased by increasing the experiment period. Date without hulls group was more effective ($P \le 0.05$) than date with hulls group in improving SI, SF, TS and TIBC with the exception of SF for 4 weeks which was similar (P>0.05) in the two groups. This observation might be due to the high fiber content in dates with hulls, which had a negative effect in iron absorption. These results are in agreement with Abdel- Rahman et al., (2008) who reported that black dates improved the levels of Hb, SI and SF in anemic Egyptian female's childbearing. Rosado et al., (2010) found that supplementation children (6-43 months) for 4 months with iron enhanced the levels of SI, SF and TIBC. Fortified milk consumption compared to consumption of control milk, resulted in an increase in mean body iron stores (SF) and a significant reduction in mean total iron binding capacity (Sazawal et al., 2010).

CONCLUSION

Finally it can be concluded that, iron from black dates with or without hulls is cheap, safe, and effective in improving hemoglobin levels and restoring iron stores to correct iron deficiency anemia.

ACKNOWLEDGMENT

We thank the staff at the orphanage for their cooperation and support.

1- Yield/ vine:

Data in Table (1) clearly show that spraying clusters of Early sweet grapevines with GA3 at 10 to 40 ppm or Sitofex at 2.5 to 10 ppm was significantly effective in improving the yield relative to the check treatment. The promotion on the yield was accompanied with increasing concentrations of each plant growth regulator. Using GA3 at 10 to 40 was significantly preferable than using Sitofex at 2.5 to 10 ppm in improving the yield. A slight and unsignificant promotion on the yield was attributed to increasing concentrations of GA3 from 20 to 40 ppm and Sitofex from 5 to 10 ppm. The maximum yield was produced on the vines that received one spray of GA₃ at 40 ppm but the best treatment from economical point of view was the application of GA₃ at 20 ppm (since no measurable promotion on the vield was recorded between 20 and 40 ppm of GA₃). Under such promised treatment, yield/ vine reached 13.6 and 14.0 kg during both seasons, respectively. The control vines produced 9.1 and 9.6 kg during 2013 and 2014 seasons, respectively. The percentage of increase on the yield due to application of GA3 at 20 ppm over the check treatment reached 49.5 and 45.8 % during both easons, respectively. The beneficial effects of GA₃.

on the yield might be attributed to theiraction on increasing cluster weight. The preeffects of GA₃ on the yield was supported results of Dimovska et al., (2011) and Abu and Salameh (2012) on different grapevine et — The results regarding the beneficial eff Sitofex on enhancing the yield are in harmo those obtained by Juan et al., (2009); Abdel et al., (2010) and Al Obeed (2011).

2- Harvesting date:

It is clear from the data in Table (1) that and Sitofex treatments had significantly dele the harvesting date of Early Sweet grapevine than the control treatment. The degree of de on harvesting date was correlated to the inci the concentrations of both GA₃ and Sitofex GA₃ significantly delayed harvesting comparing with using Sitofex. Inc eoncentrations of GA₃ from 20 to 40 p₁ Sitofex form 5 to 10 ppm failed to show sig delay on harvesting date. A consi advancement on harvesting date was obser untreated vines the great delay on harvesti was observed on the vines that received GA ppm during both seasons. GA₃ and Sitofe shown by many authors to retard the rel ethylene and the disappearance of pigments chlorophylls and carotenoids and onest of a start. Also they were responsible for prolong maturity stages Nickell (1985). These regarding the delaying effect of GA3 and Sit harvesting date were in harmony with obtained by Wassel et al., (2007). Kasser (2011), Abu Zahra and Salameh (2012) and et al. (2012).

3- Cluster weight and dimensions:

It is evident from the data in Table treating clusters with GA₃ at 10 to 40 Sitofex at 2.5 to 10 ppm was signi accompanied with enhancing weight, lengwidth of cluster relative to the control treatment.

Vol. 60, No.3, pp. 183-191

The promotion was significantly associate increasing concentrations of GA₃ and Sitofes GA₃ was significantly favourable than using in this respect. The maximum values were ron the vines that received one spray of GA ppm. Meaningless promotion was detecte increasing concentrations of GA₃ from 20 to and Sitofex from 5 to 10 ppm. The untreate produced the minimum values during both the positive action of GA₃ on cluster weightnessing action of GA₃ on cluster weightnessing might be attributed to its essen on stimulating cell division and enlarger cells, the water absorption and the biosynth proteins which will lead to increase berry Dimovska et al., (2011); Abu Zahra and S (2012) and Dimovska et al., (2014).

The previous essential role of CPPU on cluster weight was attributed to its higher content of cytokinin when applied to plants (Nickell, 1985).

4-Shot berries %:

Data in Table (2) obviously reveal that rcentage of shot berries in the clusters of Early Sweet grapevines was significantly controlled with spraying GA₃ at 10 to 40 ppm or Sitofex at 2.5 to 10 ppm relative to the check treatment. Using GA3 was preferable than using Sitofex in reducing the percentages of shot berries. There was a gradual reduction on the percentage of shot berries with increasing concentrations of GA3 and Sitofex. There was a slight reduction on such unfavourable phenomenon with increasing concentrations of GA₃ form 20 to 40 ppm and Sitofex from 5 to 10 ppm. The minimum values of shot berries (7.3 and 6.9 % during both seasons, respectively) were recorded on the clusters harvested from vines treated with GA3 at 40 ppm. The maximum values of shot berries (12.0 & 12.5 %) during both seasons were recorded on the untreated vines during both seasons. The reducing effect of GA3 on shot berries might be attributed to its important role on enhancing cell division and the biosynthesis of proteins Nickell, (1985). These results were supported by the results of wassel et al. (2007) and Abu Zahra and Salameh (2012).

5- Fruit quality:

Data in Tables (2, 3 & 4) clearly show that spraying clusters with GA3 at 10 to 40 ppm or Sitofex at 2.5 to 10 ppm significantly was accompanied with enhancing weight, longitudinal and equatorial of berry, total acidity%, proteins % and percentages of P, K and Mg and T.S.S. %, reducing sugars %, T.S.S. / acid and total carotenoids relative to the check treatment. The effect either increase or decrease was associated with increasing concentrations of each auxin. Using GA3 significantly changed these parameters than using Sitofex. A slight effect was recorded on these quality parameters with increasing concentrations of GA₃ from 20 to 40 ppm and Sitofex from 5 to 10 ppm. From economical point of view, the best results with regard to fruit quality were observed due to treating clusters with GA₃ at 20 ppm. Untreated vines produced unfavourable effects on fruit quality. These results were true during both seasons. The effect of GA2 on increasing berry weight and dimensions might be attributed to its effect in promoting cell division and enlargement of cells, water uptake and the biosynthesis of proteins Nickell (1985). These results were in concordance with those obtained by Williams and Ayars (2005) and Dimovska et al., (2014).

The higher content of Sitofex from cytokinins surly reflected on enhancing cell division and the elongation of berries Nickell (1985). These results

were in agreement with those obtained b Zahra (2013) and Retamales *et al.* (2015).

CONCLUSION

Treating Early Sweet grapevines once waverage berries reached 6mm with GA_3 at was responsible for promoting yield an quality.

REFERENCES

- Abdel-Rahman M K, Anein A A and Hussia (2008). Effect of Iron-Food Inta Anaemia Indices; Hae-moglobin, Ir Ferritin among Childbearing E Females World Journal of Agri Sciences 4(1): 7-12.
- Al Farsi M A and Lee C Y (2008). Nutritio functional properties of dates: a Critical Reviews in Food Science Nutrition 48: 877–887.
- Al-Shahib W and Marshall R J (2003). The the date palm: its possible use as t food for the future? International Jou Food Sciences and Nutrition 54 (4): 24
- AOAC, (1990). Official Methods of Ai 15th Edition, Association of C Analysis Chemists, Washington, D
- Black RE, Morris SS and Bryce J (2003). and why are 10 million children dyin year? Lancet 361: 2226–2234.
- DRI (2003). Dietary reference intakes for carbohydrate, fiber, fat, protein, c phosphorous, vitamin D, thiamin, rib vitamin C, vitamin E, vitamin A, zi iron. Washington DC: National A Press, Food and Nutrition Board, Inst Medicine.
- El Gendy M S A (2000). Nutritional assessn orphans at social welfare institut Menoufia Governorate. M.SC. Thesis of Home Economics Menoufia Un Egypt.
- El Mancy S M (2008). Studying the efficidietary intervention among children si from iron deficiency anemia. M.SC. Faculty of Home Economics M University Egypt.
- El Shorbagey H F E (2012). The effect c enhancing and inhibiting factors on n iron absorption and haema characteristics in rats. M.SC. Thesis, of Home Economics Menoufia Un Egypt.
- Falkingham M, Abdelhamid A, Cur Fairweather-Tait S, Dye L and Hc (2010). The effects of oral

- supplementation on cognition in older children and adults: a systematic review and meta-analysis. Nutrition Journal **9**: 4-13.
- Gasche C, Lomer MC, Cavill I and Weiss G (2004).

 Iron, anaemia, and inflammatory bowel diseases. Gut 53: 1190–1197.
- Hernández M, Sousa V, Villalpando S, Moreno A, Montalvo I and López-Alarcón M (2006). Cooking and Fe Fortification Have Different Effects on Fe Bioavailability of Bread and Tortillas. Journal of the American College of Nutrition 25 (1): 20-25.
- Hijar G, Aramburu A, Hurtado Y and Suárez (2015). Rice fortification to correct micronutrient deficiency in children 6-59 months old. Rev Panam Salud Publica 37(1): 52-58.
- Hussein E H, Mohamed M S and Helal A H (2006). Nutritional status of orphans children living in orphanage at Shibin El- Kom city Egypt. Journal of Home Economics Menoufia University 16 (1): 31-46.
- Karim K M R and zahid M K (2012). Nutritional status and dietary intake of the orphans: A case study in the ICH (Intervida Children Home) in Dhaka city in Bangladesh. Bangladesh Journal of Nutrition 24: 23-30
- Lee R, Nieman D, (1996). Nutritronal Assessment 2nd Edition, McGraw - Hill Science/Engineering/Math, Mosby.
- Mohamed A Y and Khamis A S (2004). Mineral ion content of the seeds of six cultivars of Bahraini date palm (Phoenix dactylifera). Journal of Agricultural and Food Chemistry 52: 6522–6525.
- National Institute of Nutrition. **1996**. Nutritive values of local food, Cairo Egypt.
- Rosado J L, González K E, Caamaño Md C, García O P, Preciado R and Odio M (2010). Efficacy of different strategies to treat anemia in children: a randomized clinical trial. Nutrition Journal 9: 40-49.
- Santiage, P (2012). Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. The Scientific World Journal Article ID 846824, 5 pages doi:10.1100/2012/846824.
- Sazawal S, Dhingra U, Dhingra P, Hiremath G, Sarkar A, Dutta Menon P and Vand Black R E (2010). Micronutrient Fortified Milk Improves Iron Status, Anemia and Growth among Children 1–4 Years: A Double Masked, Randomized, Controlled Trial. PLoS ONE J 5(8): e12167-12174.
- Soliman AT, Al Dabbagh MM, Habboub AH, Adel A, Humaidy NA and Abushahin A (2009).

- Linear growth in children with deficiency anemia before and after tre J Trop Pediatr **55**: 324–327
- Tang N, Zhu Y and Zhuang H (2015). Anti and anti-anemia activity of hem obtained from bovine hemoglobin. For Biotechnol 24(2): 635-642.
- Yurdakök K, Temiz F, Yalçin SS and Gü (2004). Efficacy of daily and week supplementation on iron status in exc breast-fed infants. J Pediatr Hemato 26(5): 284-288.
- WHO (2007). Growth st (Http://www.who.int/childgrowth/standards/bmi for age/en/index Accessed Sep 09/2007& Nov OS/201
- Abdel Fattah, M.E.; Amen, K.A.; Alaa, A
 Eman, A.A. (2010). Effect of berry tl
 CPPU spraying and pinching on clus
 berry quality of two grapevine clus
 Assiut J. of Agric. Sci., 40(4): 92-107.
- Abu Zahra, T.R. (2013). Effect of plant he application methods on fruit qua Superior seedless grape. Bic Biotechnology Research Asia Vol. 527-531.
- Abu Zahra, T.R. and Salameh, N. (2012). Ir of Gibebrellie acid and cane girdling ← size of Black Magic grape cultivar -East Journal of Scientific Research 718 722.
- Al Obeed, R.S. (2011). Enhancing the shelfstorage ability of Flame seedless gr by agrochemicals preharvest applications. Middle East Journ Scientific Research 8 (2): 319-327.
- Association of Official Agricultural C
 (A.O.A.C.) (2000). Official Meth
 Analysis (A.O.A.C.), 12th Ed., B.
 Franklin Station, Washington D.C.,
 pp. 490-510.
- Dimovska, V.; Ivanova, V.; Ilieva, I Sofijanova, E. (2011). Influen bioregulator gibberellic acid on technological characteristics of clus berry from some seedless grape v Journal of Agric. Science and techno 1074-1058.
- Dimovska, V.; Petropulos, V.I.; Salamovska,

 Ilieva, F. (2014). Flame seedless
 variety (Vitis vinifera L.) and deconcentration of gibberellic acid—
 Bulgarian Journal of Agric. Sci., 20137-142.
- Dokoozlian, N.K. (2001). Gibberellic acid ap bloom reduces fruiit set and improves "Crimson seedless" Table— Hort.science 36(4): 706-709.

- Guiseppe; F.; Andream, M.; Guiseppe, N. Carmela, P. Angela, M.; Isabella, C. Piero, M., Mariangela, V. and Vito, G. (2014). Girdling, Gibberellic acid, and forchlorfenuron effect yield, quality and metabolic profile of table grape ev. Italia. Am. J. Enol. Vitic. 65.3.
- Hiscox, A. and Isralstam B. (1979). Method for the extraction of chlorophylls from leaf tissue without maceration. Can. J. Bot. 57: 1332-1334.
- Juan, P.Z.; Bernardo, A.L. and Paulina, N. (2009).
 Preharvest applications of growth regulators and their effect on postharvest quality of table grapes during cold storage. Postharvest Biology and technology 51, 183–192.
- Kassem, H.A.; Al—Obeed, R.S. and Soliman, S. S. (2011). Improving yield, quality and profitability of Flame seedless grapevine grown under arid environmental by growth regulators—preharvest—applications. Middle East Journal of Scientific research 8 (1): 165-172.
- Lane, J. H. and Eynon, L. (1965). Determination of reducing sugars by means of Fehlings solution with methylene blue as indicator A.O.AC. Washington D.C.U.S.A. pp. 490-510.
- Leopold, A. C. (1964). Plant growth and development. pp. 133-143.TATA McGraw— Hill publishing Comp. LTD. Bombay New Delhi.
- Marzouk, H.A. and Kassem, H.A (2011). Improving yield, quality and shelfe life of Thompson seedless grapevine by preharvest foliar application. Scientia Horticulruea 130: 425-430.
- Mead, R.; Currnow, R. N. and Harted, A. M. (1993).

 Statistical Biology. 2"d Ed. Methods in

- Agriculture and Experimental and London pp. 10-20.
- Nickell, L.G. (1985). New plant growth reincrease grape size. Proc. Plant grov Soc. of Am. 12, 1-7.
- Refaat, S.S.E.; Ghada, Sh.Sh. and Ola, A.A.

 Effect of foliar spraying with gibberl and/ or sitofex on bud behaviour, ve growth, yield and cluster qual Thompson seedless grapevines. Jou American Science, 8 (5): 99: 21-34.
- Retamales, J.; Bangerth, F. Cooper, T. and C. R. (2015). Effect of CPPU and GA3-quality of Sultanina table grape. Isl Hoerticulturae 394: plant Bioregula Horticulture.
- Wassel, A.H.; Abdel Hameed, M.; Gobara, attia, M. (2007). Effect of micronuitrients, gibberellic acid and acid on growth, yield and quality of Banaty seedless grapevines. African Science Conference Proceeding Vo 547-553.
- Weaver, R. J.(1976). Grape Growing A Interscience Puplication John Wiley & New York. London. Sydney. Tronto.
- Wilde, S. A.; Corey, R. B.; Lyer, I. G. and V K. (1985). Soil and Plant Analysis f Culture. 3rd Oxford & IBH publishi New Delhi, pp. 1—218.
- Williams, L.E. and Ayars, J.E. (2005). Wate Thompson seedless grapevines as affe the application of Gibberellic acid (Gtrunk girdling practices to increasing size. Agriculture and Forest Meterolog 85-94

الملخص العربى

تأثير البلح الاسود على انيميا نقص الحديد لاطفال الملاجئ

هبة عز الدين يوسف وعبير أحمد خضر

قسم التغذية وعلوم التغذية بكلية الاقتصاد المنزلي جامعة المنوفية، شبين الكوم، مصر

محمد على مجاور عبادة، ما هر خيرى يواقيم، بسام السيد عبد المقصود بلال قد بحوث العنب – معهد بحوث البساتين – مركز البحوث الزراعية – الجيزة – مصر

ل أنيميا نقص الحديد مشكلة صحية عامة رئيسية، خاصة عند الرضع والأطفال الصغار والنساء الحوامل. لذلك ذه الدراسة إلى تقييم تأثير البلح الاسود على الأطفال الذين يعانون من انيميا نقص الحديد و يعيشون في دار نملت الدراسة أربعين طفلا من الذكورتراوحت اعمارهم (9-11عام) تم تقسيمهم إلى أربع مجموعات متساوية. غير مصابة بالانيميا، مجموعات مصابة بالانيميا وتشمل مجموعة كنترول موجبة، مجموعة البلح بقشرة البلح بدون قشرة (تناولت 100جم بلح اسود/ يوميا لمدة 8 اسابيع). تم تقييم المنتاول من الطاقة، البروتين، رات، الدهون، الألياف، الفيتامينات والمعادن لكلا من المجموعة المصابة والغير مصابة بالانيميا ومقارنتهم

I. ايضا تم تقييم القياسات الجسمية وقياسات الدم خلال فترة التجربة. اظهرت النتائج ان المجموعة المصابة لم يحصلوا علي كمية كافية من البروتين بينما الطاقة والألياف كانت مماثلة تقريبا لقيم DRI كما لوحظ ان ألمصابة والغير مصابة بالانيميا قد حصلوا علي محتويات أقل من الثيامين، فيتامين A، فيتامين B، والفوسفورمقارنة بقيم DRI. هذا وقد وجد ان الحديد والزنك كان أعلى في المجموعة الغير مصابة مقارنة مع بينما اخذت المجموعات المصابة اتجاه معاكس. مجموعة البلح بدون قشر كانت أعلى في الوزن ومؤشر كثلة نالمجموعة الغير مصابة بالانيميا ومجموعة البلح بقشرة. لوحظ ان الهيموجلوبين، الهيماتوكريت، خلايا الدم متوسط حجم الكرية الوسطي، متوسط حجم هيموجلوبين كرية الدم الحمراء، وحديد السيرم، فيريتين السيرم في مجموعات البلح الاسود قد زادت مع زيادة فترة التجربة في حين أن سعة ارتباط الحديد الكليه تجاها معاكس. كما وجد ان مجموعة البلح بدون قشر كانت أكثر فعالية من مجموعة البلح بقشرة في تحسين يرم، فيريتين السيرم، تشبع الترانسفيرين وسعة ارتباط الحديد الكليه.

الدليلية: أطفال ملاجئ، انيميا، هيموجلوبين والمتناول الغذائي

Formatted: Font: 10 pt, Not Bold, Complex Script Font: Times New Roman, Not Bold